Why is radiometric dating not useful for dating sedimentary rocks

Why is it difficult to date sedimentary rocks using radiometric dating techniques?

Because the elements used for dating need to be re-set by volcanism. Related questions What is the principle of Uniformitarianism and how is it important to the relative dating of rocks? What is the age of inclusions found in a rock relative to the rock in which they are found? What is the principle of cross-cutting relations and why is it important for relative dating? What forces can disturb relative dating? What is the law of superposition and how can it be used to relatively date rocks?

Dating Sedimentary Rock - How Do Scientists Determine the Age of Dinosaur Bones? | HowStuffWorks

What is meant by dating rocks relatively rather than absolutely? How can fossils be used to determine the relative ages of rock layers? How does the law of crosscutting relationships help scientists determine the relative age of rocks?

Are only sedimentary rocks used for relative age determination? In fact, each of these is a source of concern.

The big problem is with the last assumption. The rock record preserves erosional surfaces that record intervals in which not only is deposition of sediment not occurring, but sediment that was already there who knows how much was removed. Strata which were deposited on top of one another without interruption. An erosional surface that marks an interval of non-deposition or removal of deposits - a break in the stratigraphic sequence.

Group of conformable layers lying between unconformities. Unconformities are so common that today that sequence stratigraphy - the mapping and correlation of conformable sequences - is a major field in Geology. With unconformities factored in, the age of the Earth would have to be much greater than 36 million years. Similar attempts yielded results that varied widely between 3 million and 1. Evolution stokes the fire: By the s century, the controversy surrounding evolution prompted new attention. After all, if the Earth were too young for there to have been time for evolution, the evolution debate would be over.

In John Joly , acting on suggestion of Edmund Halley , attempted estimate based on the salinity of the ocean. He calculated the amount of salt being transported into the oceans by rivers and compared this to the salinity of sea water, obtaining an age of 90 million years.

kesipatuwi.tk #18 - Absolute radiometric age dating of rocks and geologic materials

Sir William Thomson, Lord Kelvin , during the late 19th century, assumed that the Earth had originally been molten then, using averge melting point of rocks and the laws of thermodynamics, determined that the Earth would completely solidify within 20 million years. Both uniformitarians and evolutionists were uncomfortable, since their notions required a much older Earth, but the quantitative rigor of Thomson's approach made his the most prestigeous estimate of his day.

Navigation menu

As it developed, both Joly and Tomson were leaving vital but unknown information out of their equations. Joly missed that salt is removed from the oceans by various processes. Kelvin could not have know that new heat is generated inside the Earth by radioactive decay nuclear fission , because the process had not been discovered. The discovery of radioactivity: Ironically, radioactive decay, which frustrated Kelvin's purpose, ended up providing the true key to the absolute dating of rocks.

Discovered natural radioactivity In the following years, a large number of radioactive isotopes and their daughter products became known. Pierre and Marie Curie: Discovered that the radioactive element radium continuously releases newly generated heat - radiogenic heat. With this discovery, it became clear that the decay of radioactive substances provided a continuous source of new heat that Thomson hadn't accounted for. The Earth might, indeed, be much older than his calculations indicated. At the beginning of the 20th century, Ernest Rutherford and Frederick Soddy developed the concept of the half-life - For any radioactive substance, there is a specific period of time in which half of a sample will decay to a daughter substance.

The other half will be the daughter product. After twenty years, 0. In , Rutherford made the first attempt to use this principle to estimate the age of a rock. His analysis was technically problematic because of his choice of a gas, helium as a radioactive product gasses have a way of migrating out of rocks , but it was a start.

In , Bertram Boltwood noted a specific parent-daughter relationship between an isotope of uranium, U, a radioactive isotope, and lead Pb suggesting that one decayed into the other - the uranium-lead system. Because lead is usually found as a solid, this method was more promising.

Sedimentary Rocks

Like Rutherford's, Boltwood's attempt to apply the principle to the dating of rocks was technically flawed but a step forward. Beginning in , Arthur Holmes began a long career of applying the concept of radiometric dating to rocks, and is given credit for ironing out the technical issues that hampered earlier attempts. After a century of applying the method we now know that thet oldest known Earth rocks are aprox 4. The oldest in the Solar System are 4. Some commonly used radiometric systems: Note that the effective range of these dating systems is limited by the degree of error in measurement.

Which rocks are useful for radiometric dating? When you radiometrically date a mineral grain you are determining when it crystallized. Thus, you would like to use rocks whose crystals are roughly the same age. The easiest are igneous rocks in which all crystals are roughly the same age, having solidified at about the same time. The age of new minerals crystallizing in metamorphic rocks can also be determined by radiometric dating. The problem is that metamorphism - the pressure-cooking of rocks - can occur over long intervals.

Thus, different crystal grains can yield different ages.